
 

  

 

 

Abstract— Many older adults prefer to stay in their own 
homes and age-in-place. However, physical and cognitive 
limitations in independently completing activities of daily living 
(ADLs) requires older adults to receive assistive support, often 
necessitating transitioning to care centers. In this paper, we 
present the development of a novel deep learning human activity 
recognition and classification architecture capable of 
autonomously identifying ADLs in home environments to enable 
long-term deployment of socially assistive robots to aid older 
adults. Our deep learning architecture is the first to use 
multimodal inputs to create an embedding vector approach for 
classifying and monitoring multiple ADLs. It uses spatial mid-
fusion to combine geometric, motion and semantic features of 
users, environments, and objects to classify and track ADLs. We 
leverage transfer learning to extract generic features using the 
early layers of deep networks trained on large datasets to apply 
our architecture to various ADLs. The embedding vector enables 
identification of unseen ADLs and determines intra-class 
variance for monitoring user ADL performance. Our proposed 
unique architecture can be used by socially assistive robots to 
promote reablement in the home via autonomously supporting 
the assistance of varying ADLs. Extensive experiments show 
improved classification accuracy compared to unimodal/dual-
modal models and the ADL embedding space also incorporates 
the ability to distinctly identify and track seen and unseen ADLs.   

I. INTRODUCTION 

The growing population of adults over 60 years of age is 
estimated to double to 2.1 billion by the year 2050 [1]. The 
overall aging process can potentially result in difficulties with 
completing activities of daily living (ADLs) such as personal 
hygiene, eating, and dressing due to functional limitations and 
cognitive decline [2]. Reablement is an early intervention 
strategy that aims to enhance [3]: 1) an older adult’s physical 
and cognitive functioning; 2) increase or maintain their ADL 
independence; and 3) minimize their need for long-term care 
assistance. This strategy moves caregivers away from the “do 
for” norm (i.e., doing the ADL for the older adult) to the “do 
with” approach (supporting the older adult as they complete 
the ADL) [4]. Reablement trains or retrains skills for 
maintaining or increasing ADL abilities of multiple ADLs to 
prolong independence and improve overall quality of life [3]. 
This continued independence can help keep older adults living 
in their own homes (aging-in-place); aligning with their own 
preferences. Furthermore, reablement can reduce healthcare 
costs and the demands put on long-term care [5].  

Early assessments of reablement programs with 
caregivers show they have been effective at enhancing ADL 
capabilities and improving overall health of older adults [6]. 
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However, these programs are currently constrained by 
staffing resources, lack of qualitative data for describing 
activity performance, and the need for customization to the 
preferences of individual older adults [7]. Assistive 
technologies including robots can be a viable alternative to  
deploy such reablement programs [8]. Socially assistive 
robots (SARs) are an assistive technology which can provide 
activity specific social assistance, while also monitoring ADL 
performance and adapting to user preferences and needs [9]–
[12]. A significant challenge in the long-term deployment of 
SARs into the private homes of older adults is that the current 
level of SAR activity autonomy is limited to very specific 
ADLs in structured scenarios [13].  

In this paper, we address this specific challenge by 
presenting the development of a novel deep learning ADL 
recognition and classification architecture for SARs to 
intelligently assist with reablement strategies. Our work is the 
first to consider the utilization of an end-to-end deep 
multimodal neural network that can simultaneously learn 
user, environment, and object feature representations to 
generate an ADL embedding vector capable of classifying and 
monitoring numerous diverse ADLs from personal grooming 
to eating. Our main contributions are: 1) the design of a vector 
embedding approach for ADL representation using 
multimodal data and deep neural networks, 2) the utilization 
of a unique spatial mid-fusion paradigm for synthesizing 
geometric, motion, and semantic features to unify their 
dimensions and spatial reference, and 3) an ADL 
classification model for extracting generic ADL features from 
various seen and unseen ADL classes trained on older adults 
to enable robot autonomy for reablement. 

II. RELATED WORK 

Existing work in human activity recognition (HAR) 
utilizes a variety of methods to improve accuracy, enable 
unsupervised learning, and adapt to specific scenarios and 
users. This section provides a detailed discussion on: 1) 
multimodal deep learning networks for HAR, 2) embedding 
of feature spaces for HARs, and 3) existing HAR methods 
used by socially assistive robots.   

A. Multimodal Deep Learning Networks for HAR 
Recent HAR research has focused on using data specific 

operations such as graphical convolution networks (GCNs) 
[14], [15] and learned fusion techniques [16] to combine 
multimodal inputs in order to extract complimentary features. 
These methods have combined a variety of inputs including 
human skeleton pose information [14], [15], RGB video [14]–
[16], and motion information between frames [16].  

In [14], both RGB video and 3D poses were used to 
extract visual features for spatial embedding and pose driven 
attention using a Video-Pose Network consisting of a 
combination of GCNs and spatio-temporal convolution 
networks in order to classify indoor activities, such as putting 
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on headphones and clapping for monitoring of human 
behavior. End-to-end training with 3D ConvNet using a 
regularized loss term combining cross-entropy, embedding 
loss, and an attention regularizer resulted in significant 
improvements in classification accuracy for subtle actions 
such as reading compared to single mode networks using only 
RGB video streams. In [15], the architecture proposed in [14] 
was further extended through the incorporation of two 
separate distillation training sessions. Distillation transferred 
knowledge of pose to the feature extraction layers for 
improved model speed using only the RGB video input.    

In [16], an RGB video stream and a motion information 
stream obtained from persistence of appearance (PA) were 
both used by a spatio-temporal convolutional neural network 
(CNN) with modality specific attention and late fusion for 
ADL classification. Training was accomplished using 
classification loss to learn consensus attention between the 
two modalities. Testing on segmented/unsegmented RGB 
video data of users performing ADLs, such as eating with a 
fork, showed improved accuracy over using a single modality.  

B. Embedding of Feature Spaces for HARs 
Embeddings of feature spaces are used to learn low-

dimensional vector representations of ADLs to reduce the 
dimensionality of categorical information. They are used for 
data visualization [17], and classification [14], [18]–[20]. 

In [17], accelerometer and gyroscope sensory data from 
users completing ADLs was reduced to an embedding vector 
of activity features. An Autoencoder based on a Long-Short 
Term Memory Recursive Neural Network architecture was 
trained to reduce and reconstruct the sensory data for training 
the embedding. Temporal features were embedded using a 
sequence of recursive convolutions for activities of variable 
lengths. 2D Visualization of the embeddings based on 
stochastic neighbor embedding (t-SNE) [21] showed that the 
embedded features had improved inter-class separation 
compared to handcrafted features for the same data.  

In [14], feature embeddings were used for multimodal 
fusion to improve the classification accuracy of the Video-
Pose Network. An intermediate spatial embedding space was 
developed by combining RGB video visual features and pose 
spatial features. Embedding loss was added to the training loss 
function which improved inter-class separation.  

In [18], data from inertial measurement units (IMUs) was 
mapped to a feature embedding vector to enable classification 
of sparsely labeled data. Feature embeddings were derived 
from the temporal input using CNNs and contrastive learning. 
Using the feature embeddings on partially labeled data for 
movement activities showed classification accuracy 
improvements over existing conventional autoencoders. In 
[19], a self-attention based approach was developed using a 
hierarchical window encoder (HWE) trained on temporal 
activity data using reconstruction loss to create feature 
embeddings. These embeddings were used for both 
classification training with unlabeled data and open-set 
recognition to identify unknown activities. A dense neural 
network with non-linear activations encoded and decoded the 
embedding features using an autoencoder architecture with an 
activity embedding vector. Training results showed 
improvements in closed-set classification over conventional 
autoencoders. Testing with unknown activities confirmed the 
ability of the network to identify such activities.  

Robotic object manipulation has also used embedding 
vectors for classification. For example, in [20], point clouds 
of objects, natural language instructions, and robot 
manipulation trajectories were embedded in a common 
embedding space using linear deep neural layers with non-
linear activations. The feature embeddings were used to select 
a new manipulation trajectory based on the embedding of an 
object-instruction pairing. Results showed improved accuracy 
and speed compared to embedding models using the same 
approach with larger and more complex embedding spaces.      

C. HAR for Socially Assistive Robots 
HAR has been used by social robots in human-robot 

interactions for numerous applications ranging from playing 
games to companionship [22]. A handful of SARs have been 
used to classify and track users performing ADLs using 
unimodal RGB video [11], [23], unimodal pose data from a 
depth sensor [12], [24], and multimodal data from RGB video 
and object-based sensors [11]. These activity tracking 
systems mainly use visual and depth data [11], [12], [23], [24] 
or natural language [12] classifiers, and heuristic rules [11], 
[23] to monitor and provide feedback to users via SARs. 

In [11], the human-like Brian robot was used to facilitate 
meal eating of older adults. A sensor suite was used consisting 
of Wii motes for tracking custom IR utensils, a Kinect sensor 
for detecting user engagement from pose, and a meal tray with 
embedded load cells. The user and activity state, determined 
using the sensory information and Haar feature-based cascade 
classifiers and decision rules, and the robot state, based on 
task progression history, were used by a finite state machine 
(FSM) to determine the robot’s assistive behavior. In [23], the 
Bandit robot was used to engage older adults in workout, 
imitation, and memory games. User hand and elbow joint 
positions were classified using an image segmentation 
algorithm and heuristic exercise rules. They were then used 
by an FSM to provide verbal praise by the robot for successful 
actions and corrections for unsuccessful actions.  

In [24], the Leia robot was used to guide users in upper 
body exercises. An RGB-D sensor extracted user poses and a 
K-nearest neighbors classifier was used to classify these poses 
to determine exercise completion. An FSM was used to 
determine robot behaviors based on the exercise goal and user 
state. In [12], the human-like Casper robot learned to assist 
users in the ADL of making a cup of tea. The robot used a 
combination of Learning from Demonstration and 
reinforcement learning to determine its task-related assistive 
behaviors based on user cognitive functioning and activity 
states. Learning of task-related behaviors was based on 
demonstrators’ speech using the onboard microphone and 
IBM Watson Speech-to-Text API [25] as well as gestures 
obtained by a depth camera and tracked using OpenNI [26].  

D.  Summary 
The existing multimodal deep learning for HAR methods 

have shown improvements in accuracy, especially for ADLs 
with subtle movement differences [14], [15]. Incorporating 
the embedding of feature spaces provides a low-dimensional 
representation of data for classification of unseen activities 
[17]-[19]. To-date, these embedding vectors have been 
primarily developed for user wearable sensors. Furthermore, 
HAR for SARs assisting with ADLs have focused on one 
specific [11], [12], [24] or a limited set of activities [23], 



 

  

 

without generalizability to the various multiple ADLs. Our 
research focuses on the development of a multimodal deep 
learning ADL recognition and classification architecture that 
incorporates a novel combination of vision based multimodal 
deep learning, spatial mid-fusion of multiple features, and 
feature embedding. Therefore, our work enables 
generalization to multiple ADLs and contexts to address 
current limitations of social robots which can only track user 
activity progress for specific tasks in structured environments.   

III. DEEP LEARNING HUMAN ACTIVITY RECOGNITION AND 
CLASSIFICATION ARCHITECTURE 

The objective of our deep learning human activity 
recognition and classification architecture is to identify ADL 
classes for SARs to assist with and monitor performance 
during activity completion. The overall proposed architecture 
is presented in Fig. 1. Environment, action, and object 
information is obtained from RGB-D videos. These videos are 
separated into multiple inputs to extract pertinent features. 
Namely, a downsized RGB video is obtained from the RGB 
channels and used by the Video Backbone Network to obtain a 
combination of scene and motion features. The 3D pose of the 
user is simultaneously obtained from the RGB video and depth 
streams and used by the Pose Backbone Network to obtain 3D 
user motion features independent of the scene context. Single 
RGB images are also extracted and used by the Object 
Detection Network to obtain semantic features for objects used 
in performing the ADLs. 

 
Figure 1.  Proposed Deep Learning ADL Recognition and Classification 

Architecture. 

The extracted feature set containing scene, motion, and 
semantic features from these backbone networks is then 
utilized by the Spatial Mid-Fusion Module to reshape and 
spatially scale the features for alignment before concatenation. 
This module condenses the features to a one-dimensional ADL 
embedding vector. The embedding vector is used by the Dense 
Neural Layer to determine the appropriate ADL class. The 
following subsections discuss these modules in more details. 

A.  Video Backbone Network 
The objective of the Video Backbone Network is to extract 

scene and motion features, Fig. 2. The network takes as input 
a sequence of 13 video frames of size 182 x 182 pixels by down 
sampling and cropping from the 30 fps RGB video stream. The 
X3D small network [27] is adapted herein as the feature 
selection method as it is a deep network designed for 
optimized video feature extraction. The X3D small network 
progressively expands spatial and temporal convolutional 
layers based on the ResNet architecture [28] in dimensions of 
temporal duration, frame rate, spatial resolution, width, 
bottleneck width, and depth in order to iteratively add model 
depth to achieve accuracy while decreasing complexity [27].  

The layers of the X3D small model used herein are ResNet 
Stem which consists of a 2D spatial convolution for spatial 
feature extraction, a 1D temporal convolution for temporal 
feature extraction, batch normalization [29] to increase 
training speed and model generalizability, and rectified linear 
units (ReLU) activation [30] to introduce non-linearities while 
avoiding vanishing or exploding gradients. Four successive 
ResNet Stages, each with varying branch quantities and 
compositions follow as demonstrated in Fig. 2. The output of 
the last ResNet Stage of X3D small is 13 x 192 x 6 x 6 (time, 
channels, feature grids) where each 6 x 6 video feature grid has 
inherent spatial understanding relative to the initial video. 

 
Figure 2.  Video Backbone Network Architecture.  

We have designed an ADL Feature Extractor to select the 
most significant video features for classifying ADLs using the 
general extracted features from the X3D layers as input. The 
ADL Feature Extractor uses a spatial convolution for 
geometric features, a temporal convolution for motion 
features, batch normalization for generalizability and ReLU 
activation for non-linearity. The final output is ADL feature 
grids of size 13 x 25 x 6 x 6.  

B. Pose Backbone Network 
The Pose Backbone Network extracts scene and scale 

invariant pose motion action features. The input matches the 
temporal sampling of the Video Backbone Network with 13 
frames, each with 25 skeleton joints having xs,ys,zs positions. 
We have designed the Pose Backbone Network to consist of 
parallel paths for nearby, faraway, and positional joint motion 
features using GCN [31], self-attention [32], and skip 
connections, respectively, as shown in Fig. 3. The parallel 
branches are concatenated into a single tensor and passed to 
another GCN stage for joint variant motion features. The 
reshaped output is 13 frames and 25 channels of 6 x 6 feature 
grids for multimodal fusion, where each of the 25 channels is 
associated with a specific human skeleton joint.  GCN stages 
are used to extract motion features independent of the 
environment by using message passing convolutions between 
nodes. In this work, human skeletons are transformed to a 
graph datatype where the nodes represent the 25 discrete 
skeleton joints and edges represent physical connections 
between adjacent joints.  

For the GCN stage in the parallel section, the input data is 
the xs,ys,zs position of each skeleton joint which is convolved 
with positions of adjacent joints for spatial feature extraction. 
In parallel, the same joint position data is also used in the self-
attention module to transfer the data between nodes in the 
graph using a summation of weights. To determine the 
weights, the self-attention module assigns each node in the 
graph a query, key, and value grouping learned during training 
[32]. For each node, queries are compared to the keys of other 



 

  

 

nodes and the resulting matching scores are multiplied by the 
attention node values using a dot-product of weights. The skip 
connection is a direct data transfer path to pass the positional 
input data to the next layer. The second GCN stage uses 
message passing to generate joint dependent motion features. 
The dimensions of the skeleton joint data after the second 
GCN stage are 13 x 25 x 36. Reshaping is then performed on 
pose motion features in order to match the grid shape of the 
Video Backbone Network output so that the two feature grids 
can be concatenated in the Spatial Mid-Fusion Module. 

 
Figure 3.  Pose Backbone Network Architecture. 

C. Object Detection Backbone Network 
The Object Detection Backbone is used to identify and 

localize objects in the scene during ADL classification. A 
rolling window approach is used to ensure a new RGB image 
is acquired with each timestep. The RGB images have an input 
size of 3 x 1920 x 1080 to use the full resolution available from 
the video stream to improve detection accuracy. Our Object 
Detection Network uses YOLOv5m60 [33] to extract object 
features from ADL-based home environments, Fig. 4. 
YOLOv5 was selected as it is a state-of-the-art real-time 
detector for household objects.  

 
Figure 4.  Object Detection Backbone Network Architecture (YOLOv5) 

Adapted from [33]. 

 YOLOv5 uses: 1) a Cross Stage Partial (CSP) Network 
[34] approach to Darknet [35] for extracting high-level 
spatially invariant features while avoiding unnecessary 
duplicate gradients, 2) a Path Aggregation Network (PANet) 
[36] neck layer to use spatial features from each network layer 
to segment objects, and 3) three individual convolution layers 
to output object confidence scores. In Darknet, Spatial 
Pyramid Pooling (SPP) is used to perform information 
aggregation on inputs with varying sizes [37]. The output of 
the Object Detection Backbone Network is parsed to yield a list 
of object classes and their xO,yO locations. Object classes that 

were obtained from the COCO dataset [38] included indices 0 
(person) and 31-80 (varying household objects, e.g., chair, 
bottle). A low confidence threshold of 0.25 was used to reduce 
the potential of false positives from scene and object variation.  

D. Spatial Mid-Fusion Module 
We have developed a Spatial Mid-Fusion module to 

reshape, scale, and concatenate geometric, motion, and 
semantic features from the three Video, Pose, and Object 
Backbone Network modalities, Fig. 5. The size of the input to 
the Spatial Mid-Fusion module is 14 timesteps (13 temporal 
frames from video/pose and 1 frame for object detection) with 
50 channels of feature grids of size 6x6; 14 x 50 x 6 x 6. The 
Spatial Mid-Fusion consists of: 1) a skip connection for video 
features to propagate the video feature grids to later layers, and 
2) reshaping and scaling on both the skeleton joint motion data 
for pose features and on the object positions for spatial 
features. A concatenation step combines video and pose 
features along the channel dimension and then combines the 
object location features in the temporal dimension. 

 
Figure 5.  Spatial Mid-Fusion, ADL Embedding Vector, and Dense Neural 

Layers Modules for ADL Classification. 

The pose spatial reshaping and scaling sub-module uses a 
series of mathematical operations to add spatial context to the 
pose features relative to the video spatial context. It takes as 
input the output of the Pose Backbone Network (6 x 6 feature 
girds x 25 skeleton joints x 13 time steps) and uses the xs,ys 
position of each skeleton joint for creating 2D distance maps. 
For each node, these distance maps are determined by first 
initializing a Spatial Map S of dimensions 6 x 6 x 2 which 
contains x,y positions from -1 to 1 in equal increments. Next, 
the inverse Euclidian distances are calculated between the 
normalized xs,ys skeleton joint node position and each x,y 
position in S to obtain the distance grid D of size 6 x 6. D 
represents the position of the node as a heatmap, where larger 
values are closer to this node in 2D space. Given a joint feature 
grid F, the new feature grid F’ is calculated as F’ = D × F.  

The object detection spatial reshaping and scaling sub-
module uses the list of potential objects and their xO,yO 
locations. For each object, we initialize an identity matrix I and 
a Spatial Map R identical to S with sizes of 6 x 6 and 6 x 6 x 2. 
Next, the inverse Euclidian distances between the object 
location xO,yO and each x,y position in R are used to form the 
distance grid E of size 6 x 6. The object feature grid G is then 
calculated as G = I × E. If multiple objects of the same class 
exist, object feature grid G’ is G’ = G’ × E, where E is the 
distance grid for each successive object within the same class.  

Our new ADL Feature Reducer consists of: 1) a 2D spatial 
convolution layer for spatial feature extraction between newly 



 

  

 

fused feature grids, 2) a 1D temporal convolution layer for 
temporal feature extraction and batch normalization, and 3) 
(ReLU) activation. Data is then flattened into a single vector 
of length 25,200 and passed to a linear neural layer to condense 
the features and create spatio-temporal dependences. Within 
the linear layer, batch normalization improves generalizability, 
leaky ReLU [39] activation limits vanishing gradients, and a 
dropout rate of 0.2 decreases overfitting [40]. The output is the 
ADL embedding vector of size 128.  

ADL Embedding Vector: The ADL Embedding Vector is 
a low-dimensional representation of a specific ADL 
containing geometric, motion, and semantic features that are 
dependent on action timing, locations, motions, and object 
interactions. The size of the embedding vector follows the 
dimensionality reduction of the network architecture such that 
classification accuracy is unaffected. The nature of the 
embedding space results in ADLs with feature similarity being 
close in proximity to one another using metrics such as 
Euclidian distance. The ability to compare features in a low-
dimensional space enables contextualization of unseen ADLs 
based on which existing ADL centroids have the lowest 
distance to the embedding of the new ADL. Within an ADL 
class, variations in intra-class embedding vector values 
determine if an ADL is being performed correctly overtime. 
ADL embeddings learned from relatively small sets of training 
data enable generalization within the range of observable 
features within the dataset. Given that datasets for supervised 
learning are diverse, the ADL embedding can generalize to 
new data within the known feature variations, eliminating the 
need for fully supervised training and decreasing data cost.  

F. Dense Neural Layer 
The Dense Neural Layer consists of batch normalization 

and a single fully connected linear layer. These determine 
scale independent feature interactions within the ADL 
embedding vector for classification. A dropout rate of 0.5 is 
used to classify the ADL embedding vector to an ADL class. 
The output of the Dense Neural Layer is the probabilities for 
each of the ADL classes.  

G. Transfer Learning 
Deep transfer learning is used for both the Video Backbone 

and Object Detection Backbone Networks. For the Video 
Backbone Network, transfer learning uses the first five layers 
of X3D small as a spatio-temporal feature extractor. X3D 
small is pretrained for classification of human activities from 
the Kinetics dataset [41]. For the Object Detection Backbone 
Network, the entirety of YOLOv5 is pretrained on the COCO 
dataset [38] for precise location detection of everyday objects 
in diverse environments.  

IV. ARCHITECTURE TRAINING  

 Two variations of the architecture were trained using the 
ETRI-Activity-3D dataset [42] and the Toyota Smarthome 
with Refined Skeleton Data V1.2 dataset [43] to show 
robustness to different datasets. Training used gradient descent 
based on classification loss.  

ETRI-Activity-3D dataset (ETRI): This dataset contains 
112,620 samples of 55 activities performed by 50 younger and 
50 older adult subjects [42]. Each sample contains an RGB 
video stream, a depth map, and a skeleton sequence of 3D joint 
positions. We chose ETRI as the primary dataset due to its 

inclusion of activities that directly correspond to typical ADLs 
performed older adults. It was used for hyperparameter tuning 
including the depth of layers and the number of convolutional 
channels. The ADL classes used in our training include: eating 
food with a fork, taking medicine, drinking water, brushing 
teeth, washing hands, washing face, hanging out laundry, 
putting on jacket, taking off jacket, putting on/taking off shoes, 
and brushing hair.  

Toyota Smarthome with Refined Skeleton Data V1.2 
dataset (Smarthome): This dataset consists of 31 activity 
classes in 16,000 samples of RGB video, depth video, and 
human skeleton pose sequences of older adults in smart home 
environments [43]. We trained with all 31 classes including 
basic activities such as “take pills” and compounded activities 
that have a distinct class such as “cook and cleanup” and “cook 
and cut”. As the pose data from Toyota Smarthome contains 
13 skeleton joints rather than 25, architectural modifications to 
the GCNs were required.  

Both datasets were randomized using PyTorch random 
sampling utilities to ensure an even distribution of ADL 
classes between the training, validation, and test sets. The data 
was split into the standard 70% training, 20% validation, and 
10% testing sets. Training was accomplished with a learning 
rate of 2 x	10!", a batch size of 128 and 20 epochs. Cross 
entropy [44] was used for classification loss to consider class 
confidence. The Adam optimizer [45] was used to introduce 
stochastic behavior for faster convergence using gradient 
descent. Early stopping was used to select the model with the 
lowest validation loss. Training loss stabilized after 15 epochs 
for ETRI and 7 for Smarthome, where training accuracy was 
99.9% and 99.7%, respectively. Validation accuracies of 
86.9% were obtained for ETRI with optimal hyperparameter 
selection and 74.1% for Smarthome with more challenging 
data and without optimized hyperparameters. 

V. EXPERIMENTS 

We performed several experiments to evaluate the 
performance of our ADL detection and classification 
architecture. Network performance is measured by 
classification accuracy on test sets from the ETRI and 
Smarthome datasets. We determined the effect of adding 
individual modalities using an ablation study which compared 
our multimodal to dual-modal (as primarily used in the 
literature) and unimodal networks. For evaluating the quality 
of ADL vector embeddings, the ETRI test set embeddings 
were used to construct an embedding space for visualization 
using t-SNE and numerical analysis of distance metrics. 
Comparison to an embedding space developed solely using 
RGB video is conducted to measure the impact of 
multimodality on generating ADL vector embeddings; as 
embeddings using visual data are a fairly new procedure.  

A. Experiment #1: Architecture Testing 
To evaluate classification accuracy, we tested our 

multimodal network on the two large aforementioned ADL 
datasets. On the ETRI test set with 11 ADL classes (with only 
basic activities) our low-latency architecture obtained an 
accuracy of 86.0%, the first to consider real-time applications 
on ETRI [46]. On the Smarthome test set with high duration 
variation, basic and compounded activities, and 31 classes, 
the accuracy obtained was 73.5%. Cross-subject accuracies 
for Smarthome have been reported to be below 70% [16]. 



 

  

 

B. Experiment #2: Ablation Study 
We performed an ablation study that removed single 

modalities from our three-modality architecture. Table I 
shows classification accuracy results for ETRI. Multimodality 
improves model accuracy compared to unimodal and dual-
modal networks with the same architecture. The proposed 
architecture benefits from combining complementary feature 
data for ADLs to improve classification performance.  

TABLE I.  MODEL MODALITY TEST ACCURACY 
Modality Test Accuracy  

Pose  73.7% 
RGB Video 75.1% 
Pose and RGB Video 82.4% 
Multimodal (Pose+RGB Video+Object) 86.0% 

C. Experiment #3: ADL Embedding Performance 
The ADL embedding vector quality was evaluated using: 

1) t-SNE [21] visualization to generate a low-dimensional and 
high contrast data representation based on neighboring 
samples by measuring similarities between points in the high-
dimensional space, and 2) intra-class variance and inter-class 
distance. Embedding vectors were created using the ETRI test 
set and concatenated into the embedding space. 

We use t-SNE to map the 128 dimensions of the ADL 
vector embeddings to 2D cartesian plots. ADL vector 
embeddings from the multimodal network and the RGB video 
network were compared, Fig 6(a) and (b). RGB video was 
selected as the unimodal model of comparison since it showed 
higher accuracy than pose for ETRI as shown in Table I. The 
t-SNE visualization shows that the multimodal network has 
more distinct groupings of similar classes. Namely, when 
using the RGB video modality, classes with similar 
environments and large-scale movements such as washing 
hands or face, and brushing teeth are overlapping in the 
embedding space (with low separation centroids). Using our 
multimodal embedding, the centroids have higher separation 
and visually superior inter-class distinction for similar ADLs. 
Fig. 6 shows distinctions between clothing-based ADLs 
(putting on/taking off jacket) and consumption-based ADLs 
(eating, drinking, and taking medicine).  

Intra-class variance represents the variance in Euclidian 
distances of vector embeddings from the same class. On the 
other hand, inter-class distance measures distances between 
centroids of classes. We use Euclidian distance between 
embeddings as our metric as it provides equal weighting of 
features and computational efficiency [47]. Table II shows 
both intra-class variance and inter-class distance for the 
multimodal and RGB video embedding spaces. The 
multimodal embedding space has less variation within classes 
and greater separation between classes. The lower maximum 
intra-class variance shows greater within class grouping in 
the embedding space for classes with high levels of activity 
variability such as drinking water which can occur in many 
different environments. The higher minimum inter-class 
distance (by a factor of 1.79) increases separation between the 
most similar ADL classes within the embedding space.  

We tested the contextualization of unseen ADLs by using 
5 new samples for each of 5 new ADLs (25 inputs) from the 
ETRI dataset in our multimodal architecture to obtain their 
ADL embeddings, Fig. 6(c).  These activities included “doing 
freehand exercises”, “spreading bedding/folding bedding”, 
“putting on/taking off glasses”, “putting on cosmetics”, and 

“peeling vegetables”. The unseen ADLs of “putting on/taking 
off glasses” and “putting on cosmetics” are near the trained 
ADL of “brushing hair”, as they are similar ADLs with subtle 
arm movements. However, there is clear distinction between 
their distributions indicting that they are unique ADLs. For 
ADLs that have large distributions (e.g., doing freehand 
exercises), their centroids also show large separations from 
the centroids of known ADLs, again emphasizing uniqueness.  

 
Figure 6.  ADL Embedding Spaces. 

TABLE II.  INTRA-CLASS VARIATION AND INTER-CLASS DISTANCE FOR 
EMBEDDING SPACES  

Modality 
Mean Intra-

Class 
Variance 

Maximum 
Intra-Class 
Variance 

Mean Inter-
Class 

Distance 

Minimum 
Inter-Class 

Distance 
RGB Video 0.67 0.99 3.97 1.90 

Multimodal 0.55 0.78 4.60 3.40 

VI. CONCLUSION 

We present the development of a novel multimodal deep 
learning ADL recognition and classification architecture for 
SARs to assist with ADL reablement. The architecture can 
simultaneously learn user, environment, and object feature 
representations to generate an ADL embedding vector 
capable of classifying numerous diverse ADLs via its three 
backbone networks. Spatial mid-fusion reshapes and scales 
these features into unified feature grids, while condensing 
them into the ADL embedding vector. Transfer learning 
extracts generic features from early layers of the network to 
apply our architecture to various ADLs by training on large 
datasets. Results show higher ADL classification accuracy for 
our multimodal method over unimodal/dual-modal methods. 
Visualization of the ADL embedding space shows the inter-
class separation necessary for training with unlabeled data and 
groupings of similar activities to support contextualization of 
unseen ADLs. Future work includes integrating the ADL 
embedding space on physical SARs for classifying and 
monitoring user performance overtime to provide assistance. 
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